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Coherent transport in disordered metals: zero dimensional limit
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Abstract. We consider non-equilibrium transport in disordered conductors. We calculate the interaction
correction to the current for a short wire connected to electron reservoirs by resistive interfaces. In the ab-
sence of charging effects we find a universal current-voltage-characteristics. The relevance of our calculation
for existing experiments is discussed as well as the connection with alternative theoretical approaches.

PACS. PACS 73.23.-b Electronic transport in mesoscopic systems – PACS 73.63.-b Electronic transport
in mesoscopic or nanoscale materials and structures

In recent years considerable attention has been devoted
to the effects of the Coulomb interaction on the transport
properties of small structures, like thin diffusive films and
wires [1–4], tunnel junctions [5–7], and quantum dots [8].
One interesting issue concerns the way an applied bias
voltage affects the interaction corrections to the electri-
cal conductivity. In diffusive metals these corrections arise
from the combination of the electron-electron and impu-
rity scattering and yield well known singularities at low
temperature [9]. It has been shown that a finite voltage
or, more in general, a non-equilibrium situation leads to
a suppression of these singularities [10–14]. In particular,
in [10,14] non-equilibrium transport in a short wire con-
nected to electrical reservoirs by ideal interfaces has been
considered. However, in actual experiments the interfaces
need not be ideal. Recently Weber et al. [15] investigated
experimentally the non-equilibrium transport through a
metallic nano-scale bridge. Both in [15] and in [16] it has
been suggested that the Coulomb interaction effects are
responsible for the observed temperature dependence of
the conductance and the current-voltage-characteristics.
Whereas [15] found an agreement between theory and
experiment starting from a tunneling Hamiltonian, [16]
pointed out that the experimental data agree with what
they expect for a diffusive conductor. In this paper we
develop a formalism in which both the resistive behavior
due to the interfaces and due to the diffusive wire region
are treated on the same footing. From our results we con-
clude that the main resistive behavior in [15] occurs at the
interfaces.

To begin with we recall the classical description of elec-
trical transport through structures consisting of both in-
terface barriers and diffusive regions. To be definite we
consider a system made by a diffusive wire of length L
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which is attached to the reservoirs by two interface bar-
riers. We study the system in a non-equilibrium situa-
tion with an applied voltage Vl − Vr = V where the
subscripts l and r indicate the left and right reservoirs, re-
spectively. The classical resistance of the structure is the
sum of the wire resistance and the interface resistances
Rtot = Rwire + Rl + Rr, so that the current as a function
of voltage is I = V/Rtot. The microscopic calculations are
conveniently carried out by using the Keldysh formalism
[17]. In a disordered system the Keldysh component of the
Green function reads as

GK
ε (x,x) = Fε(x)[GR

ε (x,x) − GA
ε (x,x)] (1)

≈ −2πiN0Fε(x). (2)

The first line is an exact relation and defines the distribu-
tion function F . In the second line it is assumed that the
density of states is a position independent constant. The
current flowing in the wire or through the boundaries is
then given by

Iwire = eDN0A
∫

dε∂xFε(x) (3)

Il = eΓlAN0

∫
dε[Fε(0) − F l

ε ] (4)

Ir = eΓrAN0

∫
dε[F r

ε − Fε(L)], (5)

where D is the diffusion constant, A the cross section, Γl,r

are the interface transparencies, x = 0 . . . L is the position
along the wire. The reservoirs are assumed to be in ther-
mal equilibrium, with the distribution function given by
F l,r

ε = tanh [(ε − eVl,r)/2T ]. The boundary conditions

D∂xF |x=0 = −Γl[F l − F (0)] (6)
D∂xF |x=L = −Γr[F (L) − F r] (7)
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guarantee current conservation at the interfaces. Further-
more we assume that the wire is so short that we can
neglect inelastic scattering. In this case the kinetic equa-
tion for the distribution function inside the wire becomes
−D∂2

xF = 0. After solving this equation with the appro-
priate boundary conditions one finally finds the current as
I = V/(Rl + Rwire + Rr) with

Rr = 1/(2e2AN0Γl) (8)
Rwire = L/(2e2AN0D) (9)

Rl = 1/(2e2AN0Γr) (10)

as one expects for three resistors in series.
We now discuss the quantum correction to the current.

Following [14] we divide the quantum correction to the
current in two contributions: The first contribution has the
meaning of a correction to the conductance, δI(1) = V δG.
The second one is due to the quantum correction of the
distribution function and can be interpreted as the redis-
tribution of the voltage along the interfaces and the wire,
δI(2) = GδV . Both terms are necessary in order to ensure
current conservation. By exploiting current conservation
in the structure, δIl = δIwire = δIr, and fixing the volt-
age drop over the whole system to V , so that the sum
δVl + δVr + δVwire is zero, it is possible to eliminate δI(2)

from the above equations to get for the correction to the
current:

δI =
RlδI

(1)
l + RrδI

(1)
r + RwireδI

(1)
wire

Rl + Rr + Rwire
· (11)

To proceed further we need the explicit form of δI
(1)
l,r,wire.

For an interface attached to an ideal lead on one side the
quantum correction to the current is controlled by the
correction to the density of states on the other side,

δI
(1)
l = eAΓl

∫
dεδN(ε, 0)[Fε(0) − F l

ε ] (12)

δI(1)
r = eAΓr

∫
dεδN(ε, L)[F r

ε − Fε(L)]. (13)

The limit where both sides of the interface are in thermal
equilibrium has been studied many times in the literature
[5,18]. Out of equilibrium we obtain the density of states
correction as

δN(ε, x) = −N0

∫
dω

2π
S(x, x) (14)

S(x, x) = �
∫

dx1

×Fε−ω(x1)ρω(x, x1)Φω(x1, x), (15)

where ρω(x, x1) describes the spreading of a charge in-
jected into the system at x1; it satisfies the equation

(−iω − D∂2
x)ρω(x, x′) = eδ(x − x′). (16)

The quantity Φω(x1, x) is the electrical potential at x1 of
a charge that has been injected at x. It is given by the

product of the dynamically screened Coulomb interaction
with the diffusion propagator

e2Φω(x, x′) =
∫

dx1Vω(x, x1)ρω(x1, x
′). (17)

ρ and Φ depend on the details of the device under consid-
eration and we will come back to them below.

The expression for the correction to the current in the
wire has been obtained diagrammatically in [14] and is
given by

δI
(1)
wire(x) = −eDN0A

∫
dε

∫
dω

2π
∂x[Fε(x)S(x, x)] (18)

+2eDN0A
∫

dε

∫
dω

2π
Fε(x)∂x1S(x, x1)|x1=x.

In general δI
(1)
wire(x) depends on the position x. Equa-

tion (11) however is constructed in such a way that the
spacial average δI

(1)
wire = L−1

∫
dxδI

(1)
wire(x) has to be in-

serted. Equations (12, 13, 18) allow to calculate the quan-
tum corrections far from thermal equilibrium for an arbi-
trary geometry. One observes that the only ingredients are
the position dependent distribution function F , the charge
density ρ, and the field Φ. We have already discussed the
distribution function F including the relevant boundary
conditions in equations (6, 7) and below. Inside a diffu-
sive wire the charge density ρ satisfies equation (16). At
the boundaries with the left and right reservoir one may
derive the matching conditions

D∂xρω(x, x′)|x=0 = Γlρω(0, x′)
D∂xρω(x, x′)|x=L = −Γrρω(L, x′), (19)

to be compared with equations (6) and (7). A careful anal-
ysis is also required for the field Φω(x, x′). In the case of
good metallic screening an injected charge is almost in-
stantly screened so that the wire will be electrically neu-
tral with the exception of a thin surface layer. In this case
one has inside the wire

−σ∂2
xΦω(x, x′) = eδ(x − x′), (20)

where σ = 2e2DN0A is the conductivity. In the absence
of surface charges the boundary conditions for Φ and ρ are
identical. In the presence of these charges, however, this
is not the case.

Many special cases where the general formalism dis-
cussed above applies have been discussed in the literature.
For example standard Coulomb blockade physics is found
when the resistance of the system is dominated by one
of the interfaces [18,19]. In this limit a non-equilibrium
analysis is not necessary since the distribution function
has the equilibrium form on both sides of the interface.
The limit of two highly resistive interfaces has been stud-
ied in [20,15] and the opposite limit of a resistive wire and
no interface barriers has been discussed in [10,14]. In the
following we concentrate on a short resistive wire with in-
terfaces assuming temperatures of the order of and lower
than the Thouless energy, �D/L2.
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Fig. 1. Temperature dependence of the conductance for dif-
ferent values of the bias voltage. ∂I/∂V is in units of e2/h and
must be multiplied with the non-universal number A defined
in the equation (23). γ0 is the energy of the lowest diffusive
mode; in the absence of interface barriers γ0 = π2

�D/L2, for
strongly resistive interfaces γ0 → 0.

We start by expanding the charge density ρ in diffusive
modes,

ρω(x, x′) = e
∑

n

fn(x)fn(x′)
−iω + γn

, (21)

where the (normalized) functions fn(x) are obtained by
the eigenvalue equation

−D∂2
xfn(x) = γnfn(x). (22)

In the zero dimensional limit we approximate the sum in
equation (21) by retaining only the eigenmode with the
lowest energy, i.e. ρω(x, x′) → ef0(x)f0(x′)/(−iω + γ0).
This approximation is justified when the energy scales re-
lated to the temperature and to the voltage remain be-
low the energy of the second lowest diffusive mode. Let
us for the moment ignore charging effects. Then the field
Φω(x, x′) is frequency independent and one observes that
the frequency dependent factors in all the contributions to
the current are identical, δI(T, V ) ∼ F l

ε−ωF r
ε /(−iω + γ0).

The explicit result reads

δI = −A
e

2π

∫ ∞

0

dηe−γ0η

[
πT

sinh(πTη)

]2

sin(eV η) (23)

where only the dimensionless number A and the quantity
γ0 depend on the details of the system under considera-
tion. Notice that the integral has to be cut off at short
times in order to avoid a logarithmic divergence. Let us
first discuss the temperature and voltage dependence of
δI, before determining A and γ0 explicitly in the two lim-
its of perfectly transparent interfaces and for interfaces
with low transparency. Figure 1 shows ∂I/∂V/(Ae2/2π)
as a function of temperature, the classical conductance has
been subtracted. At high temperature there is a logarith-
mic behavior, which saturates below Tsat ∼ max(γ0, eV ).
Figure 2 shows the voltage dependence of the conductance.
Note that the linear conductance has been subtracted. For
γ0 � T the conductance scales with voltage over temper-
ature, while when γ0 is large the relevant scale for con-
ductance variations is γ0.
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Fig. 2. Voltage dependence of the conductance. In all curves
the linear conductance has been subtracted.

How large are the amplitude A and the energy of
the lowest diffusion mode γ0? In the case of two well
transmitting interfaces, Gwire � Gl, Gr, the eigenfunction
of equation (22) with the lowest eigenvalue is

f0(x) =

√
2
L

sin(πx/L), γ0 = π2D/L2. (24)

The distribution function and the potential Φ are deter-
mined as

F (x) = [(L − x)Fl + xFr ]/L (25)

Φω(x, x′) =
e

Gwire

{
(L − x′)x/L2 x < x′

(L − x)x′/L2 x > x′ (26)

and the amplitude of the correction to the current is
found to be A = 64/π4 − 4/π2 ≈ 0.25. In the opposite
limit, Gwire � Gl, Gr the eigenvalue equation (22) may
be solved perturbatively in the barrier transparency and
one obtains

f0(x) = 1/
√

L, γ0 = (Γl + Γr)/L (27)
F (x) = (ΓlFl + ΓrFr)/(Γl + Γr) (28)

Φω(x, x′) = e/(Gl + Gr), (29)

which leads to A = 2ΓlΓr/(Γl + Γr)2.
It is useful at this point to briefly discuss how the

charging effects modify the above results. In the case of
highly transmitting interfaces, we assume that the ac-
cumulated charge is proportional to the field as ρ(x) =
CΦ(x), where C is a capacitance per unit length. This
leads to a diffusion equation for the field

−iωCΦω(x, x′) − σ∂2
xΦω(x, x′) = eδ(x − x′) (30)

with the solution

Φω(x, x′) = 2e
∑
n

sin(nπx/L) sin(nπx′/L)
−iω(CL) + (πn)2Gwire

, (31)

and the correction to the current is modified according to

δI = − e

2π

∫ ∞

0

dηe−ηγ0

[
πT

sinh(πTη)

]2

sin(eV η)

×
∑

n

An{1 − exp[−η(πn)2/R(CL)]}. (32)
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The numbers An depend on the wave-function of the dif-
fusive mode n and R = G−1

wire. Notice that although the
charge density ρω(x, x′) is zero dimensional many diffusive
modes have to be taken into account in the field φω(x, x′).
For a small capacitance C the charging simply cures the
short time divergence in the integral in equation (23). For
a larger capacitance the I-V -characteristics is no longer a
universal function. For the system with poorly transmit-
ting interfaces, the field in equation (29) has to be replaced
by Φω(x, x′) = e/(−iωC̃ + Gl + Gr), where we denoted
the capacitance of the system by C̃. The modification to
the current is analogous to equation (32).

In several respects our results agree with [15] and [16].
We find, in the case of charge neutrality, a universal I-V -
characteristics and, over a certain range of temperature, a
logarithmic correction to the conductance. In some points,
however, our results are remarkably different from [15,16].
For the closed system our improved treatment of the “zero
mode” allows a more precise calculation of the amplitude
of the lnT behaviour in the conductance than [15]. The
major difference however concerns the low temperature
saturation of ∂I/∂V . We find that the scale for this satu-
ration is set by the energy of the lowest diffusive mode in
the system. This scale seems to be absent in [16], and the
origin of this discrepancy is not clear to us.

Finally, as far as the experiments are concerned, a lnT
behavior in the linear resistivity of a short metallic bridge
together with an I-V -characteristics which agrees well
with the universal function (23) has been observed in [15].
In [16] it has been suggested that the effect might be due
to the Coulomb effects in a diffusive wire, whereas in [15]
the Coulomb correction to the tunneling conductance has
been suggested as the explanation. Our work shows that
also in the intermediate regime with both diffusive and
interface resistivity the predicted I-V -characteristics does
not change and thus agrees with the experimentally ob-
served one. Furthermore we can rule out a purely diffu-
sive conductor: In [15] the Thouless energy, which sets
the scale for the lowest diffusive mode in an open sys-
tem and therefore the low temperature saturation of the
conductance, has been estimated to be of the order of
several Kelvin, whereas the ln T is observed down to
100 mK. In the case with resistive interfaces on the other
hand the energy of the lowest diffusive mode is reduced,
γ0 ∼ �D/L2(Rwire/R) � �D/L2. From this consideration
we conclude that in the experiment the diffusive resistance
is considerably smaller than the interface resistance. A fur-
ther hint for the importance of interfaces is found from the
prefactor A: For the open system we found A ≈ 0.25 and
A = 2GlGr/(Gr + Gr)2 in the tunnel limit. The experi-
mental values [15] are between A ≈ 0.43 . . .0.7, i.e. closer
to the the tunnel limit than to the open system. In order
to check these ideas it would be of interest to modify ex-
perimentally the resistance of the interface relative to the
short bridge and observe both a change of the prefactor
of the lnT behavior and of the saturation temperature.

In conclusion, we calculated the Coulomb inter-
action contribution to the current through structures
which are composed of diffusive pieces and resistive

interfaces. Our general formalism agrees with earlier
studies on the Coulomb correction to the tunneling
conductance [5,18,19] and on the Coulomb correction in
diffusive conductors [1,9]. In contrast to those earlier stud-
ies our formalism treats both effects on equal footing and
is valid even far from thermal equilibrium. We concen-
trated on the zero dimensional limit valid for temperatures
below the Thouless energy and have shown that our theo-
retical results provide an explanation of the experimental
findings of [15].
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Rev. B 63, 165426 (2001)
16. D.S. Golubev, A.D. Zaikin, Phys. Rev. Lett. 86, 4887

(2001)
17. J. Rammer, H. Smith, Rev. Mod. Phys. 58, 323 (1986)
18. Yu.V. Nazarov, Zh. Eksp. Teor. Fiz. 95, 975 (1989) [Sov.

Phys. JETP 68, 561 (1989)]; Pis’ma Zh. Eksp. Teor. Fiz.
49, 105 (1989) [JETP Lett. 49, 127 (1989)]; Phys. Lett. A
147, 81 (1990)

19. L.S. Levitov, A.V. Shytov, JETP Lett. 66,214 (1997)
20. A. Kamenev, Y. Gefen, Phys. Rev. B 54, 5428 (1996)

R
apide N

ote Ra
pi
d 
N
ot
e


